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Abstract. In this paper we investigate the problem of matching im-
ages and captions. We exploit the kernel canonical correlation analysis
(KCCA) to learn a similarity between images and texts. We then propose
methods to build improved visual and text kernels. The visual kernels are
based on visual classifiers that use responses of a deep convolutional neu-
ral network as features, and the text kernel improves the Bag-of-Words
(BoW) representation by learning a vision based lexical similarity be-
tween words. We consider two application scenarios, one where only an
external image set weakly related to the evaluation dataset is available
for training the visual classifiers, and one where visual data closely re-
lated to the evaluation set can be used. We evaluate our visual and text
kernels on a large and publicly available benchmark, where we show that
our proposed methods substantially improve upon the state-of-the-art.

1 Introduction

The explosive growth of visual and textual data on the web and in personal col-
lections demands effective methods for image and video search, visual content
description and text-to-image generation. Owing to recent advances in computer
vision (CV), natural language processing (NLP) and machine learning (ML), in-
tegrated modelling of vision and language is finding more and more applications,
e.g. face recognition from caption-based supervision [1], text-to-image corefer-
ence [2], and zero-shot visual learning using purely textural description [3]. In
particular, generating natural language description for image and video has at-
tracted much interest in both CV and NLP communities [4–16].

One of the main issues with the work in [4–16], however, is the lack of auto-
matic and objective evaluation metric. In [17] the problem of generating natural
language description for a given image is relaxed to one of ranking a set of human-
written captions, by assuming the set contains the original (human-written) cap-
tion of the image. [17] builds a dataset (dubbed Flickr8K) of image and caption
pairs, and employs the kernel canonical correlation analysis (KCCA) [18, 19] to
learn a latent space in which a similarity measure between an image and a cap-
tion is defined. KCCA requires two kernels to be built, one for the images and
the other for the captions. [17] fixes the image kernel to a relatively simple one
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that uses only low level and mid-level visual information such as colour, texture
and SIFT descriptors, and demonstrates that text kernels that exploit lexical
similarities and high-order co-occurrence information outperform the basic Bag-
of-Word (BoW) text kernel.

In this paper, we build on the results from [17], and propose an approach that
significantly improves the performance of image-to-text annotation and text-to-
image retrieval. In particular we consider the scenario where there is no image
data for training visual classifiers for synsets in the application domain at hand.
Our contributions can be summaries as follows:

– Our approach makes use of additional visual classifiers for synsets different
than those contained in the evaluation data. We show that the combination
of the basic BoW text kernel and a high level image kernel based on the
probabilities given by visual classifiers outperforms the best combination
in [17] in most evaluation metrics (Section 5.1);

– We demonstrate that visual classifiers trained for synsets included in the
evaluation dataset improve the retrieval scores by a factor of two compared
to the best method in [17] (Section 5.2);

– Finally, in contrast to lexical similarities computed using text corpora, we
propose to use the high level visual information to learn a lexical similarity,
and show that the BoW text kernel enriched with such lexical similarity
further boosts the performance (Section 6).

The remainder of this paper is organised as follows: in Section 2 we brief re-
view existing work on description generation for image and video. In particular,
we present the dataset and experimental setup introduced in [17], which we com-
pare our approaches to. The BoW text kernel used in our studies is presented
in Section 3, followed by an introduction in Section 4 to our visual recogni-
tion pipeline that is based on a deep convolutional neural network (CNN). In
Section 5, the performance of high level visual kernels built using external and
internal sets of synsets is presented respectively, with analysis and discussions. In
Section 6, we propose a vision based lexical similarity to model partial matches
in the text representation, and compare it to language based lexical similarities.
Finally, Section 7 concludes the paper.

2 Related Work

Generating natural language description for image and video has become a pop-
ular research topic in recent years. Among existing work on this topic, the goal
in [4] is automatic caption generation for a given news image with an associated
news article. A good caption for such an image is often only loosely related to
the content of the image. The setting of this work is therefore different from
that in [5–12], where the objective is to generate a caption that describes what
is depicted in the image.

In [5], a dataset with 1 million image-caption pairs is leveraged, and the cap-
tion of the image in the dataset that is visually most similar to the given image
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is transferred as its caption. However, even with 1 million images, it is unrealistic
to expect that every possible query image with various objects and actions can
be represented and found in such dataset. In contrast to this caption transfer ap-
proach, the work in [6–12] adopts the conventional content selection and surface
realisation approach. Starting from the output of visual processing engines e.g.
object classifiers, object detectors and attribute classifiers, image content that
will be described is selected in the form of tuples such as subject-action-object
triplets, object-preposition-object triplets, and object-action-preposition-scene
triplets quadruplet. A surface realiser is then employed to produce captions as
constrained by the lexicon and grammar.

While [6] focuses on the investigation of surface realisation techniques, the
work in [7–12] differs primarily in the way the tuples of image content are gener-
ated. In [7, 8], structured output learning techniques i.e. structured support vec-
tor machine (S-SVM) and conditional random field (CRF) are employed to learn
the mapping from the output of visual processing engines to the tuples. In [11]
the tuples for the test image are a weighted collection of those for the training
examples, and the weights are learnt from training image-caption pairs. In [12]
content selection and planning is formulated as an integer linear program (ILP).
Finally, [9, 10] employ language corpora to learn word co-occurrence statistics
and use the statistics to filter and enrich the output of visual processing engines.
While [9] uses a hidden Markov model (HMM) to determine the quadruplet of
image content, [10] generates syntactic trees to encode what the visual engines
see.

In parallel to image captioning, automatic video description is also receiving
increasing attention [13–16]. Although details differ, [13–16] operate within the
same paradigm of content selection and surface realisation. Compared to im-
age description, typically video description systems additionally employ spatio-
temporal methods for action recognition.

2.1 Image Description as a Ranking Task

The approaches discussed above can produce human-like description for image
and video. However, [17] argues that these approaches lack automatic and ob-
jective evaluation methods. On the one hand, although automatic evaluation
metrics such as BLEU [20] and ROUGE [21] are useful for measuring the flu-
ency of the generated text [22], it is shown in [17] that they are not reliable
metrics for how accurately a caption describes an image. On the other hand,
human judgements can be quite reliable but are expensive and time-consuming
to collect. To address this issue, [17] builds a dataset of image-caption pairs, and
formulates the image captioning problem as one of ranking a set of available
human-written captions.

The Flickr8K dataset The authors of [17] collected 8000 images from the Flickr.com
website, which focused on people or animal performing actions. Using a crowd-
sourcing service, five captions were generated by different annotators for each
image. The annotators were asked to describe the actors, objects, scenes and
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– A cat standing on carpet is interested in a piece of string in
the air nearby wood flooring.

– A white and brown cat bats at a frayed string dangling in front
of him.

– Cat playing with a dangling string.
– Cat standing to play with string.
– The white and black cat pawed at the piece of fabric.

– A couple of several people sitting on a ledge overlooking the
beach.

– A group of people sit on a wall at the beach.
– A group of teens sit on a wall by a beach.
– Crowd of people at the beach.
– Several young people sitting on a rail above a crowded beach.

Table 1. Two example image-caption pairs in the Flickr8K dataset.

activities that were shown in the image, i.e., information that could be obtained
from the image alone. Two examples of image-caption pairs are illustrated in
Table 1. The dataset is split into predefined training, validation, and test sets
with 6000, 1000, and 1000 pairs respectively. The five captions are pooled into
one for the training set, and in the validation and test sets only caption 2 is
used. Each image-caption pair therefore can be thought of as consisting of one
image and one caption.

Kernel canonical correlation analysis (KCCA) Given m samples of two sets
of variables {xi}mi=1 and {yi}mi=1 where xi ∈ Rdx and yi ∈ Rdy . Canonical
correlation analysis (CCA) [23] finds a projection for each set such that in the
projected common space the linear correlation of the samples is maximised.
CCA can be kernelised by implicitly embedding xi and yi into feature spaces
through kernel functions kx(xi,xj) and ky(yi,yj) [18, 19]. The resulting kernel
CCA (KCCA) finds the two projections by solving:

argmax
α,β

αTKxKyβ√
(αTK2

xα+ καTKxα)(βTK2
yβ + κβTKyβ)

(1)

where Kx and Ky are the m × m training kernel matrices with Kx[i, j] =
kx(xi,xj) and Ky[i, j] = ky(yi,yj), and κ is a regularisation parameter. Let
l be the number of test examples, and K ′

x and K ′
y be the m × l test kernel

matrices. The similarity measure between test image i′ and test caption j′ is
defined as the cosine of the angle between the two projected points in the learnt
common space:

Sim(xi′ ,yj′) = cos(αTK ′
x[:, i′], βTK ′

y[:, j′]) (2)

or the linear correlation between them:

Sim(xi′ ,yj′) = corr(αTK ′
x[:, i′], βTK ′

y[:, j′]) (3)
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whereK ′
x[:, i′] denotes the i′th column ofK ′

x, andK ′
y[:, j′] denotes the j′th column

of K ′
y.

Evaluation metrics Given an image kernel and a text kernel, [17] learns the
common space using KCCA. For each test image, the 1000 captions in the test
set are ranked according to their similarity to the image using Eq. (2). This
ranked list allows to define metrics that measure how well images and captions
are matched in the learnt common space. [17] proposes to use the recall of the
caption originally paired with the image at position 1, 5, 10 of the ranked list
(R@1, R@5, R@10), and the median rank (MR) of this original gold caption for
all test images.

Formulating caption generation as a ranking task allows different approaches
to be compared in an automatic, efficient and objective fashion. Moreover, such
a framework can be trivially extended to perform the symmetric task of im-
age retrieval using captions. We therefore employ the KCCA approach for both
image-to-text annotation and text-to-image retrieval. We use the metrics R@1,
R@5, R@10 and MR to measure the performance of our kernels on both anno-
tation and retrieval tasks, and compare with that in [17].

3 Bag-of-Words (BoW) Text Kernel

In this section, we introduce the text kernel Ky used in our study. First, all cap-
tions are processed using the linguistic analyser of [24]. This analyser performs
tokenisation, lemmatisation, part-of-speech (POS) tagging and word-sense dis-
ambiguation. There are 5768 unique lemmatised words in the training captions.
We build a dy = 5768 dimensional bag-of-words (BoW) representation for each
caption, with the rth dimension:

yr = tr log
D

dr + 1
(4)

where tr is the term frequency (TF) of the rth lemmatised word i.e. the number
it appears in the caption, dr is document frequency of the lemmatised word i.e.
the number of training captions where it appears, and D is the total number of
training captions. We adopt the linear correlation as the kernel function:

ky(yi,yj) = corr(yi,yj) (5)

and denote the resulting kernel BoW5′, where “5” indicates that for the train-
ing set the five captions are pooled into one, and the prime symbol indicates
that BoW5′ is a close variant of the BoW5 kernel used in [17] with the follow-
ing differences: 1) BoW5′ adopts the linear correlation as kernel function while
BoW5 adopts the cosine; 2) BoW5′ uses the standard inverse document fre-
quency (IDF) weight while BoW5 uses a square-rooted version which is found
to perform better in [17]; 3) stop words are kept when building BoW5′ while
they are removed in BoW5.
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Table 2. Statistics of the sets of synsets involved in our work. Visual classifiers are
trained for the two sets in boldface.

Synset set # of synsets # of images

{ILSVRC12} 1000 1,281,169

{Caption} 3335 -

{ImageNet} 21841 -

{ILSVRC12} ∩ {ImageNet} 999 -

{ILSVRC12} ∩ {Caption} 197 -

{Caption} ∩ {ImageNet} 1372 1,571,576

The word-sense disambiguation component of the linguistic analyser also
maps each token to a WordNet synset. We denote by {Caption} the set of 3335
synsets that correspond to tokens in the captions labelled as nouns by the POS
tagger. In the following, we train visual classifiers for a subset of {Caption}, and
use the output of the classifiers to build a high level visual kernel.

4 Building High Level Visual Kernels with Deep Learning

Following the success of deep convolutional neural network (CNN) [25] in the
ImageNet large scale visual recognition challenge 2012 (ILSVRC12) [26], deep
learning [27, 28] has become the de-facto approach for large scale visual recogni-
tion. Moreover, it has recently been shown in [29] that features extracted from
the activations of a deep CNN trained in a fully supervised fashion can be re-
purposed to novel generic tasks that differ significantly from the original task.

Inspired by [29], we extract such activations as features for novel visual recog-
nition tasks. More specifically, we train binary classifiers for two sets of WordNet
synsets: the first set, denoted {ILSVRC12}, is the synsets in the ILSVRC12 chal-
lenge; and the second set, denoted {Caption} ∩ {ImageNet}, is the intersection
of the 3335 noun synsets in the captions of Flickr8K and the 21841 synsets in
the 2011 Fall release of the ImageNet [30]. Statistics of the sets involved are
summarised in Table 2.

For each of the two sets, we extract activations of a pre-trained CNN model
as features for images in the synsets. Similarly, features are also extracted for the
images in Flickr8K. The pre-trained CNN model is a reference implementation
of the structure proposed in [25] with minor modifications, and is made publicly
available through the Caffe project [31]. It is shown in [29] that the activations
of layer six of the CNN perform the best for novel tasks. Our study on a toy
example with ten ImageNet synsets however suggests that the activations of
layer seven have a small edge.

Again for each of the two sets, once the 4096 dimensional activations of layer
seven are extracted, we train binary support vector machines (SVMs) using the
LIBSVM toolbox [32] for each synset, with 5000 images randomly sampled from
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Fig. 1. The top 20 most frequently appearing synsets in Flickr8K. X-axis: the first
word/phrase in the WordNet definition of a synset; Y-axis: number of appearances in
the 8000× 5 = 40000 original captions (before pooling for training set).

all synsets as negative examples. The trained SVMs are used to predict the
probabilities of the presence of the n synsets in the Flickr8K images.

Let x be the dx = n dimensional representation of an image, where its tth

element xt is the probability that synset t is present in the image, as given by
the tth SVM. We again use the linear correlation as kernel function:

kx(xi,xj) = corr(xi,xj) (6)

Compared to the visual kernel in [17] which uses only low and mid- level visual
information such as colour, texture and SIFT descriptors, our kernel encodes high
level visual information in terms of presence of objects, actions, and scenes.

5 Evaluation of High Level Visual Kernels

In this section, we evaluate the high level visual kernels in conjunction with
the BoW5′ text kernel under the KCCA framework, and provide analysis and
discussions on the results. To enable a fair comparison, we follow [17] and find 15
best performing models on the validation set by tuning the KCCA regularisation
parameter κ and the dimensionality d of the learnt common space. The final
rank on the test set is obtained by aggregating the ranks given by the 15 sets
of optimal parameters. In the following, we consider two scenarios: when visual
classifiers are leant for sysnets that are external to the Flickr8K dataset i.e.
synsets in {ILSVRC12} (Section 5.1); and when they are learnt for synsets from
the captions of Flickr8K i.e. synsets in {Caption} ∩ {ImageNet} (Section 5.2).

5.1 Learning for Synsets in {ILSVRC12}

To build the Flickr8K dataset, images were collected from six Flickr groups:
strangers!, Wild-Child, Dogs in Action, Outdoor Activities, Action Photogra-
phy, and Flickr-Social. As a result, the images tend to depict people or animals
(mainly dogs) performing some action. The top 20 most frequently appearing
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(b) {Caption} ∩ {ImageNet}

Fig. 2. Ratio of top K synsets in {Caption} ranked by appearances that have visual
classifiers. (a): when learning for synsets in {ILSVRC12}; (b): when learning for synsets
in {Caption} ∩ {ImageNet}.

Table 3. Performance of high level visual kernel learnt on {ILSVRC12}, ILS.

Image annotation Image retrieval

Image Text R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Pyr BoW5 6.2 17.1 24.3 58.0 5.8 16.7 23.6 60.0

Pyr TagRank 6.0 17.0 23.8 56.0 5.4 17.4 24.3 52.5

Pyr Tri5 7.1 17.2 23.7 53.0 6.0 17.8 26.2 55.0

Pyr Tri5Sem 8.3 21.6 30.3 34.0 7.6 20.7 30.1 38.0

ILS BoW5′ 7.5 21.8 33.3 26.0 6.6 24.6 34.7 26.0

synsets in the set {Caption} are shown in Fig. 1, where we can see that synset
dog, domestic dog, Canis familiaris (WordNet ID n02084071) appears in more
than 9000 captions out of the original 40000, twice more than synset homo, man,
human being, human (WordNet ID n02472293). Note that to avoid clutter, in
Fig. 1 as well as in the rest of this paper, we use the first word of the WordNet
definition to refer to a synset, e.g., we use dog instead of dog, domestic dog, Canis
familiaris for synset n02084071.

{ILSVRC12} provides training images for synsets external to Flickr8K and
has a very small intersection with {Caption}. According to Table 2, the two sets
have 197 common elements. More details are presented Fig. 2 (a), which shows
the ratio of the top K synsets in {Caption} that have visual classifiers (i.e. also
in {ILSVRC12}). The first synset with a visual classifier appears at K = 83,
and the fraction of Flickr8K noun synsets with visual classifiers is lower than
8%. The low level of overlapping between {ILSVRC12} and {Caption} fits our
application scenario where little directly related training data is available.

In Table 3 we present the performance of our high level visual kernel ILS that
is built by visual classifiers for the synsets in {ILSVRC12}. For comparison we
also include the performance of the methods reported in [17], where Pyr denotes
the visual kernel in [17] that uses only low and mid- level visual information,
TagRank, Tri5 and Tri5Sem are sophisticated text kernels that use high-order
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(d) Median Rank

Fig. 3. Mean and standard deviation of performance averaged over “annotation” and
“retrieval” tasks as functions of the number of random synsets.

word statistics and lexical similarities. Table 3 shows the recalls R@1, R@5,
R@10 and the median rank on both annotation and retrieval tasks.

The results in Table 3 demonstrate that ILS performs well despite the
small overlap between {ILSVRC12} and {Caption}. When the basic text kernels
BoW5 or BoW5′ are used, ILS outperforms Pyr by large margins in all met-
rics and on both tasks. For example, with the same Pyr visual kernel, the text
kernels TagRank and Tri5 that exploit high-order word statistics reduce the
median rank of BoW5 from 58 to 56 and 53 respectively, while ILS takes it to
26. This suggests that compared to noisy low level visual representation, better
alignment can be found between high level visual information and captions.

When compared to the best combination in [17] Pyr/Tri5Sem, where Tri5Sem
encodes both third-order word co-occurrence statistics and lexical similarities
learnt from several external corpora, the ILS/BoW5′ combination still leads in
most metrics. Interestingly, while Tri5Sem seems better at finding the exact
gold item as indicted by the higher R@1 scores, ILS can bring good matches to
the query overall, leading to better R@5, R@10 and median rank scores.

We also randomly sample 100 to 900 synsets at a step size of 100 and build vi-
sual kernels using only the predicted probabilities from the corresponding SVMs.
For each sample size we repeat the experiment 15 times, and report the mean
and standard deviation of the four metrics in Fig. 3. Note that in Fig. 3 the
performance has been averaged over the two tasks.
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Table 4. Performance of high level visual kernel learnt on {Caption} ∩ {ImageNet},
CapIma.

Image annotation Image retrieval

Image Text R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Pyr Tri5Sem 8.3 21.6 30.3 34.0 7.6 20.7 30.1 38.0

ILS BoW5′ 7.5 21.8 33.3 26.0 6.6 24.6 34.7 26.0

CapIma BoW5′ 10.0 27.3 39.2 19.0 9.8 28.8 38.6 19.0

It is clear that the performance curves in Fig. 3 show no sign of saturation,
which suggests that with visual classifiers trained for more sysnets the perfor-
mance can be further improved. These results confirm that learning high level
visual representation for a set of sysnets external to the captions is a viable ap-
proach for matching images and captions. This can be very useful as in practice
training images are not always available for all synsets in the captions.

5.2 Learning for Synsets in {Caption} ∩ {ImageNet}

In the second scenario, we learn for synsets that are actually in the captions. To
obtain training images we use the intersection of {Caption} and {ImageNet}.
The resulting set {Caption} ∩ {ImageNet} has 1372 synsets with image data
available for training visual classifiers.

Fig. 2 (b) plots the ratio of the top K synsets in {Caption} that have visual
classifiers. Compared to Fig. 2 (a) the ratio here is much higher. For example,
out of 10, 50, and 100 top ranked synsets, 7, 31, and 57 respectively have corre-
sponding visual classifiers. Overall, 1372 synsets out of the total 3335 have visual
classifiers.

In Table 4 we report the performance of the visual kernel CapIma that is
built using {Caption}∩{ImageNet}. For convenience we also repeat the results of
Pyr/BoW5 and ILS/BoW5′ from Table 3. Table 4 shows that CapIma/BoW5′

combination outperforms the other two by large margins in all metrics and on
both tasks. For example, its median rank (19.0) almost halves that of Pyr/BoW5
(36.0), which is the best reported in [17]. The significant edge of CapIma/BoW5′

over ILS/BoW5′ demonstrates the advantage of learning the visual appearance
of the objects, scenes and actions that are actually mentioned in the captions,
rather than learn the context.

Fig. 3 plots the performance when using varying numbers of randomly sam-
pled synsets to build visual kernels, where for each number the averaged result
for 15 random sets is reported. It gives a flavour of the performance that can be
expected when training images are available only for limited number of synsets.
For instance, when only 250 synsets have visual classifiers, the R@10 score is
approximately 30, which is similar to that of Pyr/Tri5Sem.
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Fig. 4. Visual correlation with dog synset.

6 Vision Based Lexical Similarity

One of the key problems with the basic BoW5/BoW5′ text kernels is that they
require exact match of words, and cannot account for the fact that the same
entity can be described in different words. In [17] three lexical similarity measures
are leant on text corpora. These similarities capture semantic relatedness, hence
allow partial matches between words. The Tri5Sem text kernel is then built by
combining the lexical similarities, and is shown to be the best performing text
kernel.

In contrast to the linguistics based similarities, we propose a vision based
lexical similarity measure. This measure exploits the high level visual information
encoded in the output of the visual classifiers. Recall that xt in the representation
of an image is the prediction of the visual classifier corresponding to the tth

synset. Let xt ∈ Rm and xt
′ ∈ Rm be predictions of the presence of synsets

t and t′ for all training images in Flickr8K. The linear correlation c(t, t′) =
corr(xt,xt

′
) ∈ [−1, 1] can be thought of as a visually informed lexical similarity

between synsets t and t′.
Fig. 4 plots the correlations between the dog synset and another 16 synsets.

The figure shows that all breeds of dog have high positive correlations with dog.
The correlations between the three mammals cow, sheep, cat and dog are also
high, although in general not as high as the dog breeds. On the other hand, bird,
insect, and the semantically unrelated ones all correlate poorly with dog. This
demonstrates the potential advantages of the vision based lexical similarity.

The Lin similarity [33] used in [17] exploits the hypernym/hyponym relations
in WordNet. As a result, synsets that have close relations but are not visually
similar may have high similarity, for example, dog and bird, swimming and foot-
ball. This particularly poses a problem when alignment between image and text
is sought. Our vision based similarity measure, on the the hand, tackles the very
problem. Moreover, the vision based similarity is not confused by the presence of
words in semantically unrelated sysnets, e.g. dog in dog iron, which are visually
dissimilar.

Recall that the word-sense disambiguation component of the linguistic anal-
yser of [24] establishes correspondences between the lemmatised words and synsets.
We consider the case where visual classifiers are trained for synsets in {Caption}∩
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Table 5. Performance of vision based lexical similarity.

Image annotation Image retrieval

Image Text R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Pyr Tri5Sem 8.3 21.6 30.3 34.0 7.6 20.7 30.1 38.0

ILS BoW5′ 7.5 21.8 33.3 26.0 6.6 24.6 34.7 26.0

CapIma BoW5′ 10.0 27.3 39.2 19.0 9.8 28.8 38.6 19.0

CapIma BoW5′
V 11.1 29.8 42.2 16.0 11.2 30.7 40.9 15.0

{ImageNet}. Let syn(r) be the synset ID in {Caption}∩{ImageNet} that corre-
sponds to the rth word in the dictionary of 5768 unique words. The rth dimension
of the BoW representation with vision based similarity incorporated, is then:

yr =

(
tr + γ

∑
s∈{S}\r

tsc
(
syn(r), syn(s)

))
log

D

dr + 1
(7)

where {S} is the set of word IDs in the dictionary whose corresponding sysnets
have visual classifiers, ts is the term frequency of the sth word in the dictionary,
and γ ∈ [0, 1] is a parameter that is learnt on the validation set. When γ is set
to 0, Eq. (7) reduces to the standard BoW representation in Eq. (4). Otherwise,
the additional term accounts for partial matches between words: not only the rth

word activates the rth bin of the BoW representation, other words also contribute
an amount determined by the visual similarity between them and the rth word.

We denote by BoW5′V the text kernel using vision based lexical similarity and
report its performance in Table 5, where for comparison we repeat the content
of Table 4. The CapIma/BoW5′V combination outperforms the previous best
CapIma/BoW5′ in all metrics, reducing the median rank from 19.0 to 15.5.
This clearly indicates the advantage of exploiting vision based lexical similarity.

The Tri5Sem kernel in [17] combines several linguistics based lexical simi-
larities trained on both internal (captions) and external corpora. Among them,
the alignment based similarity takes advantage of the fact that each image in
Flickr8K is associated with five independently written captions. Our vision based
similarity does not rely on this and is therefore more general. Moreover, note
that ideally we would like to compute the visual similarity between every pair of
noun synsets, or even ever pair of sysnets, in the captions. In practice, however,
we are constrained by available training images, and as a result we have pair-
wise similarity only for 1372 synsets. The potentials of the vision based lexical
similarity are therefore not fully realised.

Finally, the five top ranked and the gold captions/images for three random
test examples on both tasks are shown in Table 6 and Table 7, where the best
kernels CapIma/BoW5′V are used.
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– A boy in a park playing with two orange balls.
– little girls in swimsuits are laughing
– A boy in a bathing suit stands in water.
– A dark man in a white and green feathered mask with green jewelry and

pants.
– A child wearing swim goggles.
– . . .
– A man and a woman in festive costumes dancing.

– A black dog in water.
– A child slides down a slide and into the water.
– A boy is diving through the air into a swimming pool.
– a person doing the backstroke in a swimming pool
– a brown and white dog swimming towards some in the pool

– A basketball player wearing a black and white uniform dribbles the ball.
– A boy with red shorts is holding a basketball in a basketball court.
– A basketball player dribbles the ball while another blocks him and an

official looks on.
– Several basketball players are grabbing for the ball during a game.
– A basketball game
– . . .
– A player from the white and green highschool team dribbles

down court defended by a player from the other team.

Table 6. Query image, the five top ranked captions retrieved (from top to bottom),
and the gold caption (in boldface). In the three random examples the rank of the gold
caption is 9, 5, and 11 respectively.

The dogs are in the snow in front of a fence.

A hiker ascends a snowy hill.

Three boys in a building under construction.

Table 7. Query caption, the five top ranked images retrieved (from left to right), and
the gold image (in column 6). In the three random examples the rank of the gold image
is 22, 16, and 810 respectively.
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7 Conclusions

We have presented an approach for matching images and captions based on
KCCA. Our visual kernels encode high level visual information resulting from
state-of-the-art image recognition, leading to a significant improvement com-
pared to low level visual representation in [17]. We successfully make use of
additional annotated data with very few labels directly related to the test im-
ages, and we quantify the gain in performance when the visual classifiers are
trained for directly related synsets. We have also proposed to exploit responses
of visual classifiers to compute a lexical similarity between words. We evaluated
the proposed approaches on a large and publicly available dataset, and showed
that our methods substantially improved the state-of-the-art performance.
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